View Comments

Nanotech for Green Innovation

Organization for Economic Cooperation and Development | June 19, 2013


The need for development of affordable and safe ways of addressing global challenges, in areas such as energy, environment, and health, has never been more pressing. The global demand for energy is expected to increase by more than 30 percent between 2010 and 2035 (International Energy Agency, 2011). More than 800 million people worldwide are currently without access to safe drinking water (WHO, 2010). Such challenges have resulted in increasing attention being paid by policymakers, researchers, and corporations to new technologies, and the application of technologies in new ways. Green innovation is one such new way of addressing global challenges.

Green innovation is innovation that reduces environmental impacts: by increasing energy efficiency, by reducing waste or greenhouse gas emissions, by minimizing the consumption of nonrenewable raw materials. OECD countries and emerging economies alike are seeking new ways to use green innovation for increased competitiveness through a transition to a so-called "green growth" scenario based on the application of technology (OECD, 2012a). Within the group of technologies that are expected to contribute to that transition, nanotechnology is attracting particular attention.

Since it began its work in 2007, the OECD Working Party on Nanotechnology (WPN) has developed a number of projects addressing emerging policy issues of science, technology, and innovation related to the responsible development of nanotechnology. During that time, discussions within the WPN have increasingly highlighted the potential of nanotechnology to support green growth, focusing on two particular aspects: i) the potential for nanotechnology to contribute to green innovation; and ii) the potential and perceived risks and environmental costs of using the technology. The second of these may reduce the ability of nanotechnology to achieve its green goals, i.e. to meet its "green vocation."

Green Nanotechnology in the Context of a Green Innovation Transition

Nanotechnology for green innovation—green nanotechnology—aims for products and processes that are safe, energy efficient, reduce waste, and lessen greenhouse gas emissions. Such products and processes are based on renewable materials or have a low net impact on the environment. Green nanotechnology is also about manufacturing processes that are economically and environmentally sustainable.

Green nanotechnology is increasingly being referred to in connection with other concepts such as green chemistry and sustainable and green engineering and manufacturing. The principles of green chemistry can be applied to produce safer and more sustainable nanomaterials and more efficient and sustainable nano manufacturing processes. Conversely, the principles of nanoscience can be used to foster green chemistry by using nanotechnology to make manufacturing more environmentally friendly.

Green nanotechnology can have multiple roles and impacts across the whole value chain of a product and can be of an enabling nature, being used as a tool to further support technology or product development.

Significant advances have been made in the field of nanotechnology in the past decade and more, helping it to move closer to achieving its green potential. However, the economic and environmental sustainability of green solutions involving nanotechnology is in many cases as yet unclear and some novel solutions bring with them environmental, health and safety (EHS) risks (e.g. high energy manufacturing processes and processes which may rely on toxic materials). These risks must be mitigated in advancing green nanotechnology.

Green nanotechnology is expected to increasingly impact on a large range of economic sectors, ranging from food packaging to automobiles, from the tire industry to electronics. Nanotechnology is also increasingly being applied in conjunction with other technologies, such as biotechnology and energy, leading to products that incorporate multiple green technological innovations.

The Policy Environment for Green Nanotechnology

When reviewing government strategies for science, technology, and innovation, the presence of nanotechnology for green innovation is apparent. Recurrent priorities in governmental programs include nanotechnology for energy production and storage; nanotechnology for water treatment; and nanotechnology for the environment (in particular, in reducing pressure on raw materials and in fostering sustainable manufacturing and sustainable products).

In many countries, supports for green nanotechnology have been mainstreamed within more general efforts to green the trajectory of the economy. Green nanotechnology operates in a complex landscape of fiscal and legislative policies and allied measures for green growth and science, technology, and innovation. Framing conditions—such as regulation, standards and research, environmental and enterprise policy—are strongly influencing the development of green nanotechnology for processes or products.

If the reasons behind investment in nanotechnology vary to some extent at national levels (depending on national scientific and economic specializations, competitiveness goals and societal objectives), there still remains a common trend, visible in both OECD and emerging economies, in governments seeing nanotechnology as having the potential to address social and environmental challenges while supporting industrial competitiveness and economic growth. Policies for green nanotechnology broadly aim to facilitate its development and its potential to be used for efficient, affordable, and safe applications.

Technology policies mainly take the form of R&D investments—increasingly directed towards more applied research, although basic research is often retained as an important area for investment—and support for small and medium enterprises (SMEs). Efforts are also being made to reduce uncertainty around the use of nanotechnology (especially regulatory uncertainty) and to ensure responsible development. These are evidenced in the investment in a growing number of initiatives (at national and international levels) which are looking at environmental health and safety (EHS) risks and ethical and social issues.

Diminishing and sharing the costs of the development and commercialization of green nanotechnology (i.e. risk reduction and sharing) is also a focus for policy intervention. Although green nanotechnology is increasingly demonstrating its potential to move out of the laboratory and into concrete solutions for products and processes, there is still a great hesitancy from companies to lead the way. This reluctance derives from a number of factors including the risks associated with the technology (e.g. consumer acceptance, EHS, ethical and social risks); regulatory uncertainty; the lack of maturity of the technology; market uncertainty; the low number of successful demonstrators of the benefits of using nanotechnology (in the form of green nanotechnology products already on the market); and a strong competition with traditional technologies and production techniques.

For nanotechnology to address major environmental and societal challenges, products using nanotechnology need to be manufactured and used in large volumes. Funding is needed to support prototyping and pilot manufacturing, as this is a point at which costs and risk are at their highest, discouraging corporations and institutional investors from funding these activities. Policies are increasingly being developed which are directed at funding proof of concept, pilot, and demonstration projects.

In addition, efforts are being made to strengthen the links between public and private entities. Industrial consortia are being developed with the support of, and sometimes initiated by, public bodies, for example, the NanoBusiness Alliance in the United States and the Nanotechnology Industries Association in Europe. At the research, development and early commercialization stages, more innovative approaches to sharing risk and knowledge are also being developed based on large consortia comprising companies, public laboratories and institutions (e.g. Genesis, InnoCNT, NanoNextNL).

Such consortia allow for risk-sharing between public and private entities, but also risk sharing among companies themselves. Consortia may also help to manage the uncertainty of bringing a product to market when no similar technologies have previously been commercialized or when the demand for the technology or application is not yet clear.

There is also a general trend to reinforce the links between public entities themselves. Within the OECD and emerging economies, coordination between different ministries, agencies, and departments to support nanotechnology and nanotechnology for green applications was commonly seen in WPN projects.

There may also be a role for demand-side policies supporting the development and commercialization of nanotechnology for global challenges, including the use of green nanotechnology. Scenarios are often seen in nanotechnology product development in which producers are reluctant to invest in options for which customers and users are not yet articulating a clear demand or where no clear product options are identified as yet. This uncertainty about market perspectives and customer/user demand and requirements is being addressed through new alliances and consortia, as mentioned above, but there may also be a need for interventions to further reduce the uncertainty, including demand-side policies.

The Potential Impact of Nanotechnology on Green Innovation

Increasingly, as the technology is being developed, efforts are being made to try to find ways of assessing or tracking the impact of nanotechnology on specific policy objectives such as green growth. This is a very challenging task due to the sheer number of applications of nanotechnology across all economic sectors and its broad enabling nature, as well as the potential for it to impact across value chains and to create a complex setting for any robust impact analysis. The potential risks of new green nanotechnologies might need to be compared with those of current technologies (which may, for example, also be energy intensive and present various risks) and against the human and environmental costs of not effectively addressing key global challenges (such as reducing carbon emissions or providing potable water).

The policy landscape in which nanotechnology operates is complex, evolving, and responsive to economic and social challenges. A wide range of potential economic, environmental, and societal implications of the technology needs to be included in methodologies for assessing the impact of green innovation through nanotechnology.

Download: Nanotechnology for Green Innovation (PDF, 1.10 M)

Read More: Business, Economy, Energy, Environment, Finance, Health, Innovation, Science, Sustainability, Technology, United States, Americas, Europe

blog comments powered by Disqus

Site Search

Global Research Engine

This search includes our Core Network partners.

Join Our Mailing Lists

The Journal